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The multipole moments  and multipole polarizabilities of  ethylene and the 
long range coefficients for the interactions between two ethylene molecules 
have been calculated using LCAO-SCF wave functions. Subjecting different 
AO basis sets to a completeness test, we have shown that the inclusion of  
polarization functions slightly more diffuse than the valence orbitals is 
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1. Introduction 

Theoretical studies of  Van der Waals forces, which play a very important  role in 
determining the properties of  molecular crystals and liquids, have concentrated in 
the past  primarily on the interactions between atoms [ 1-5]. Most of  the theoretical 
work performed on forces between molecules has resorted to semiempirical cal- 
culations. The most  obvious reason for this scarcity of  ab initio calculations is that 
it used to be hard to obtain good wavefunctions for molecules. Another problem 
typical for interacting molecules arises from the fact that, if one employs the Born- 
Oppenheimer approximation,  the intermolecular forces obtained by the (approxi- 
mate) solution of the electronic wave equation must be averaged over the 
vibrations of  the monomers.  (Terms which arise from the interactions between the 
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monomer vibrations and which give nuclear contributions to the dispersion forces, 
are small [6].) This averaging process, which is far from trivial for larger systems, 
has recently been performed by Meyer [7] for the H2-dimer and the He-H 2 
complex. Meyer has found that the averaging can effectively be taken care of by 
using vibrationally averaged geometries. Fortunately, these kinds of geometries 
are readily available from experiment. 

When performing calculations on the interactions between molecules, one must be 
aware that the potential energy surface may be strongly anisotropic. Indeed, many 
properties of molecular liquids and crystals precisely depend on this anisotropy, 
and so, contrary to what is commonly done for atoms, one should not perform an 
a priori rotational averaging of the interactions, as this would obscure many 
details of the surface that are of prime physical interest. 

The ethylene dimer, being the simplest example of a rc-n complex, constitutes an 
interesting case for ab initio and semiempirical calculations alike. One of the early 
analyses of the dispersion energy in this system is by Haugh and Hirschfelder [8]. 
Recently ab initio calculations on the ethylene dimer have been reported by 
Wormer and Van der Avoird [9]. They employed a multistructure Valence-Bond 
(VB) method, which yields simultaneously the short range repulsive and the long 
range attractive interaction energy. The connection of this method with the work 
of London [10, 11] who applied Rayleigh-Schr6dinger first and second order 
perturbation theory has been pointed out in Ref. [9]. For large intermolecular 
distances, where the exchange and the higher order perturbation energies, which 
are not taken into account in London's work, are negligible, the VB results con- 
verge to the perturbation results. Because all dimer integrals are calculated in the 
VB method the computations of Ref. [9] were performed with a rather small 
(s, p) basis set without polarization functions. 

In this paper we compare the long range part of the intermolecular energy of the 
ethylene dimer in the Rayleigh-Schr6dinger perturbation framework for different 
basis sets (including the basis used in Ref. [9]) and analyze the observed basis set 
dependence. Exchange contributions to the interaction will not be considered in 
this paper. Also not included in this work are third and higher order perturbations 
and relativistic effects. We have decided for the multipole expansion of the inter- 
action operator [3, 12-17], thus enabling the treatment of large basis sets. A 
similar approach has been adopted in our analysis of the H% interaction energy 
[18], where optimal exponents were computed for the p and d polarization func- 
tions on He using the multipole expansion, which were then used in VB calcula- 
tions. The importance of polarization functions has been stated previously for 
first order molecular properties like permanent multipole moments [19-21] as 
well as for second order properties like polarizabilities [22-25] ; their necessity for 
the interaction energy has also been stressed by several authors [18, 26-28]. In 
the present paper two criteria are applied to judge on the adequacy of the AO 
basis: the first, which compares the permanent moments on the monomers with 
the best available data, gives an estimate for the reliability of the computed first 
order (electrostatic) energy. A test on the completeness of the AO basis under the 
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various multipole operators provides a second criterion useful for second order 
quantities such as the (dimer) dispersion and induction energy and the (monomer) 
molecular polarizabilities. 

The use of the multipole expansion causes problems of convergence. This has been 
investigated for the first order energy [29-33], and, to a somewhat lesser extent, 
also for the second order energy. However, in the latter case only very simple 
systems have been considered until now or additional approximations were intro- 
duced [3, 34-36]. In this paper we look also into the convergence problem, both 
in first and second order. Moreover the applicability of  the point charge (mono- 
pole) model, which has often been proposed as a means to improve the con- 
vergence of the first order energy [29-31, 37, 38], is studied. Special attention is 
paid to the so-called second order cross terms [39-46] because of  their significant 
influence on the convergence of the second order energy and their orientational 
dependence which is far more pronounced than the anisotropy of  the ordinary 
quadratic terms. Also in the case of atoms these terms contribute in principle to the 
interaction (that is, if the atoms are not in an S-state). But, as it is common to 
average over the magnetic quantum numbers [3], these terms have in atomic 
calculations always escaped attention in the past. 

Another point of interest of  this paper is the validity of  Uns61d's approximation 
for the second order perturbation energy [47] in the manner proposed in Ref. [45], 
which differs from the generally applied way [1, 2, 35, 36, 39, 40, 48 53] by insert- 
ing a calculated anisotropic mean energy instead of an isotropic empirical value 
(e.g. the ionization energy). 

Finally, the behaviour of ethylene as a n-system is considered looking at the 
polarizability and its second order interaction energy. This is of  interest because a 
considerable number of computations take only the n electrons into account 
[36, 54-58]. 

2. The Long Range Interaction in the Multipole Expansion 

The multipole expansion of the interaction operator for the molecules A and B 
can be written as follows: 

~, +l< 
v A B =  2 R--(IA+IB § 1)Gin 0 f )  

IAIB~lA, m~lB, m" (1) 
IA, /B= 0 m=--l< 

Here the symbol l< indicates the smaller of l a and l B . A special choice of  the co- 
ordinate systems on both molecules has been made: the x and y axes are parallel, 
and the z-axes coincide; R is the distance between the origins of  the two co- 
ordinate Systems. C m is given by: IAIB 

C rn ~AlB=(--1)~B+m(la +lB)!{(ln +m)!(la --m)!(lB+m)!(lB--rn)!} -1/z. (2a) 
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Q~, m is a component of the 2t-multipole moment operator defined on the basis of  
the normalized tesseral harmonic S~,,,: 

Q~,m = ~2-~f j ~izirliSl, m(~i), (2b) 

where the summation over i runs over all particles in the molecule (electrons and 
nuclei) of  charge zi and position ~i (in a.u.); ?i represents the angular coordinates 
o f ~ .  The multipole expansion (1) is often expressed in terms of Cartesian tensors 
[14-17] which causes some redundancy, however, unless the pair traces from the 
multipole tensors are removed [15, 16]. Definition of the moments in terms of  
spherical or tesseral harmonics has the advantage of giving a closed expression for 
the whole series [3, 12, 13]. We have chosen (real) tesseral harmonics, since they 
are computationally advantageous over (complex) spherical harmonics. Explicit 
expressions for tesseral harmonics up to and including l =  6 are given in Ref. [59]. 

By inserting the multipole expansion in the first and second order perturbation 
formulae one obtains the first order electrostatic energy from (1) by taking the 

Ql,,,. Transition expectation values of Qt,m over the ground state, denoted by oo 
multipole moments Qz~ occur in second order: 

+ / <  +l '< 

1A, I'A, IB, I~ m=-- l<  m'=--l'< 

t"}0AnAt'3nAOA t~0BnB /-InBOB 

, ~ l ~ , , .  ~ l 'A ,  ,.' ~ l B ,  , .  ~ l ~ , , . ~  ( 3 )  
• ~' E.A+En__EoA__Eo~ t/A, B 

where E,  is the energy belonging to the state [q~, >. Two physically different terms 
can be distinguished in (3): induction energy where either n A or n B refers to the 
ground state, and dispersion energy where both n A and n B refer to excited states. 

The occurrence of quadratic and cross terms in (3) should be noted : we speak of 
quadratic terms when l), = l A and at the same time l~ = lB, cross terms arise in all 
other cases. Although the cross terms have already received some attention 
[39-46, 13], only a few approximate calculations have been performed to get an 
insight in the real importance of these terms: Refs. [42] and [46] treat the first 
induction Cross term in some ion-atom systems. In Ref. [44] the first non- 
vanishing dispersion cross term for molecules with axial symmetry ( R - ,  depend- 
ence) has been estimated rather crudely and in Refs. [39] and [40] an explicit 
expression has been presented for the ratio of the R-7 cross and R-6  quadratic 
terms of  the dispersion energy in the case of an interacting atom and a tetrahedral 
molecule. In all these calculations experimental quantities have been used (dipole 
and quadrupole moment,  dipole polarizability). 

For the ground state monomer wavefunctions, t0A and ~boB, we have chosen the 
results of LCAO-MO-SCF-computat ions;  the singly excited monomer states are 
constructed by promoting one electron from an occupied molecular orbital i to a 
virtual one j. An exact zero-order Hamiltonian pertaining to this choice is com- 
posed of the Hartree-Fock Hamiltonians of A and B. The energy differences 
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E n -  E0, appearing in the denominators of (3), are then consistently given as the 
differences between the orbital energies, ej-ei, of the molecular orbitals involved. 
Since this scheme completely neglects intramolecular correlation one should in 
fact apply double perturbation theory [60]. We have not done so, but we have 
considered the same wavefunctions as the eigenstates of  a different zero-order 
Hamiltonian [26, 61, 62] including repulsion. In that case state energy differences 
appear in the denominators: E , -  E 0 = e j -  e i - Ji.j + 2Kij,  where J and K represent 
Coulomb and exchange integrals. We shall refer to the two methods as orbital 
energy difference and state energy difference method respectively ~. It must be 
noted that the asymptotic correspondence between the multistructure VB method 
and the perturbation formalism [9] applies to the latter method. 

3. UnsiJld's Approximation 

An approximation to the second order energy has been proposed by Uns61d [-47], 
applying it in his calculations on H~. This approximation can be decomposed in 
two steps : 

1) replacement of all energy denominators in the sum over states perturbation 
formula by the mean excitation energy. 

2) application of the closure relation (resolution of the identity), which is also an 
approximation for a non-complete basis set, so that the remaining sum over 
states reduces to an expression containing only expectation values over the 
ground state of the system. 

The first step of  this approximation has frequently been used in order to obtain 
empirical values for dispersion coefficients of various molecules [1, 2, 10, 36, 39, 
40, 48]; for instance, the well-known London dispersion formula with R -6 
dependence 1-10, 48] results directly from this procedure. But also the complete 
Uns61d approximation has been employed, mainly in calculations on atoms 
[35, 49-53]. Sometimes different mean energies were proposed for different 
quantities [-50, 51], such as dipole and quadrupole excitations, but in general only 
one value is employed. In all this previous work the mean energy is estimated from 
experiment (i.e. it is taken to be an ionization or first excitation energy). The 
following alternative approach has been proposed in Ref. [45] and applied exten- 
sively in Ref. [-17]: an anisotropic mean energy, obtainable from computed 
polarizabilities, is introduced, the anisotropy being imposed by relating the mean 
energy denominators to the corresponding multipole operators which occur in the 
matrix-elements of the numerators. Expression (3), as far as the dispersion part is 
concerned, now becomes: 

1 In Ref. [62] the methods are called respectively Hartree-Fock partitioning and Epstein-Nesbet 
partitioning. The orbital energy difference method corresponds with method c of the well-known 
article of Langhoff et al. [63] on Hartree-Fock perturbation theory, while the state energy difference 
method is almost similar to method b of the same article (actually it is exactly the same as the example 
which has been elaborated in Ref. [63]). 
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m 
= __ I k l ~  AE(2) ~ E R-(la+tX+lB+ti3+2) ClAIBCm" 

AIX, m' a- All3, m' 
lA ,  l'A, lB, li3 m , m '  l A , m  ~ ~ l B ,  m 

X ~zr~.lA,m "~.I'A, m'  /~0lOnB [-~nBOB'(  . 

n 0 A  n 0 n  

This is the first step of  the Uns61d approximation, namely the mean energy 
approximation, by which a decoupling of  the energy denominators on A and B 
in (3) is accomplished. The mean energies and the operators are connected in our 
approach by the following weighted average formula, which renders their com- 
putation possible: 

nO l ~ O O~ at,,m,/fE_Eo ) 
n~:O 

AI)2' Z .o (5) Q l ' ,  m" 
nr O 

Thus we relate the A's to the various polarizabilities. Application of  the second 
step, the closure relation, to (4) now yields 

C m C"  A E ( 2 ) = _  ~ ~ R--(tA+tX+IB+I~+2) /A/B tXli~ 
A1k, m'~_ Alh, rn' 

IA,  I'A, IB, I~ m , m '  ~ l A , m  ~ ~ l B ,  m 

• { (QtA, mt') ~0AOA -- QOAOA .0AOA) 
"~;l 'A,m']  .IA, m kC. l 'A ,m' j  

x {(Ql,,m Oli3,m') OBOB- glOBOB t')OBOB~ 
t'ff, lB, m ~ l h ,  m'  , "  (6) 

Since, as will be shown in the sequel, the mean energies defined in (5) do not 
depend very sensitively on the size of the basis set and since this is also true for the 
moments appearing in (6), formula (6) is very suitable for the computation of  
second order energies in small bases. 

However, one must be aware that by the presence of the anisotropic mean excita- 
tion energies, the formulae (4) and (6) have become dependent on the orientation 
of the local systems of axes. We do not feel that this non-invariance is too strong an 
objection against the applicability of these formulae, however, since the multipole 
expansion itself already depends on the position of  these coordinate systems. 
Moreover, some test calculations have shown that the orientational dependence 
is very small indeed, in any case orders of magnitude smaller than the deviations 
introduced by the Uns61d approximation. No profit is gained if one maintains the 
rotational invariance by using an isotropic mean energy computed from the mean 
polarizability, because of the larger deviations between the results of the formulas 
(3) and (4), which are obtained in that case. 

4. Basis Sets and Their Evaluation 

Four different AO basis sets of contracted GTO's  have been compared and tested 
on their behaviour in first and second order. 

A. a C(6, 3/3, 2), H(3/2) basis set described in Ref. [9]. 
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B. a C(9, 5/4, 2), H(4/2) basis set, which corresponds with basis set B from 
Ref. [64], except for the p-basis on C which is taken to be isotropic, fixed at 
the p~ value, instead of anisotropic. 

C. the same basis as B, augmented with isotropic polarization functions on both 
C and H. The exponents are intermediate between the two non-isotropic 
values presented in Ref. 1-64]: 
~3~c = 0.8, which corresponds with a Slater exponent ~3dc of 2.45 [65], 
e2pH= 1.1 (~pH=2.47 [65]). 

D. a basis only differing from C in the values of the exponents of the polarization 
functions: 
e3dc =0.3 (~3dc = 1.50), 
c~2p H = 0.2 (~zpH = 1.05). 

The third basis set is expected to give a good description of the ground state of the 
molecule because it has been optimized to this aim. The fourth basis set has been 
chosen from our experience in calculations of the dispersion energy of He-He [ 18] 
and He-H 2 [27] : optimization of the p and d atomic orbital exponents by maxi- 
mizing the dispersion energy yielded values somewhat lower than the exponent of 
the highest occupied atomic orbital. In the present work we have applied this 
recipe to the AO-basis sets of carbon and hydrogen, fixing the "Slater" exponents 
of the polarization functions at a value somewhat lower than the Slater exponents 
of the 2p~ and l s  orbitals of Ref. [66]. We expect these more diffuse polarization 
functions to give better results for the dispersion energy than the polarization 
functions of basis set C. 

In Table 1 the SCF total energies of the ethylene monomer are listed; included are 
also the comparable values from Ref. [64] and the best SCF total energy calcu- 
lated up to now [64]. From this table it appears that the choice of an isotropic 
instead of an anisotropic basis hardly affects the SCF energy, and also that the 
rather diffuse polarization functions do not improve the SCF energy to a great 
extent. The LCAO-SCF wavefunctions have been obtained with the integral pro- 
gram of IBMOL-5A [68-] and the SCF program of IBMOL-5 [69] connected by 

Table 1. Total energy (in a.u.) of ethylene in different basis sets a 

Basis Total energy 

A. Split valence: C(6, 3/3, 2), H(3/2) 
B. Double zeta: C(9, 5/4, 2), H(4/2) 
C. SCF polarization functions: 

c(9, 5, 1/4, 2, 1), H(4, 1/2, 1) 
D. Van der Waals polarization functions: 

C(9, 5, 1/4, 2, 1), H(4, 1/2, 1) 
Best SCF-basis 

- 77.9001 
-78.0155 (-78.0160) b 

-78.0506 (-78.0508) b 

- 78.0260 
-78.0623 b 

a Vibrationally averaged geometry 1-67]. 
The y-axis has been chosen along the CC-bond and the z-axis perpendicular 
to the molecular plane. 

b Ref. [66]. 
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an interface program. 2 Permanent multipole moments to order six and transition 
moments to order three were computed with a program especially written for this 
purpose; analytic formulas for these moments were derived by the differentiation 
method described in Ref. [70]. 

4.1. First Order Characteristics: Permanent Multipole Moments 

Because of the symmetry ( O z h )  of ethylene all odd multipole moments vanish, 
furthermore, choosing the coordinate system along the principal axes the Qt,m are 
only non-zero for positive and even m. Table 2 shows that all basis sets yield rather 
good values for the permanent multipole moments, considering the results of 
basis set C being the best available, since the only experimental value available is 
for just one of the components of the quadrupole tensor [71]. Moments higher than 
the quadrupole have not been calculated at the present time in basis sets better 
than our basis C. The rather limited (s, p) basis set A compares remarkably well 
with basis set C. Basis set D gives slightly inferior results, which are still quite 
reasonable, however, if we keep in mind that the exponents of the polarization 
functions are not chosen for first order optimization. To check the feasibility of 
computations with polarization functions on carbon only, we also performed some 
calculations omitting the polarization functions on hydrogen. This, however, 
leads to serious deviations in the moments (for example: Q2,0 becomes 
-2.1526 a.u.) and therefore we dropped this line of approach. 

Table 2, Non-zero permanent  multipole moment  components (in a.u.) of ethylene in different basis 
sets" 

Permanent  

moment b A B C D 

Q2, 0 ~ d - 2.7408 -- 2.7290 - 2.7409 - 2.5463 

Q2,a - 0.2506 - 0.0352 - 0.0905 - o. 1355 

Q4,o 20.8510 18.7802 19.2296 18.3647 
Q4,z 4.4576 4.5630 3.2289 0.3977 

Q4,,* -34 .1917 -29.1431 -31 .3733 -31.0946 

Q6,o -213.1945 - 189.0803 -207.5108 -204.3627 

Q6,2 - 58.2723 - 53.2508 -49.8621 - 39.0053 
Q6,~ 312.0751 268.7805 307.9053 322.3411 
Q6,6 206.0902 167.8440 165j558 164.6217 

a y-axis along CC-bond; z-axis perpendicular to molecular plane. 
b According to definition (2b) in Sect. 2. 
c Equivalent to Q~ from the definition of Ref. [15]. 

Experimental  value: - 2.75 a.u. [73]. 

2 HTVSYM, a program which transforms the one- and two-electron integrals produced by IBMOL- 
5A to integrals over symmetry orbitals adapted to the format of IBMOL5-SCF; written by C. Meerman- 
Van Benthem, W. van Doorn, and M. C. van Hemert, Leiden (1975). 
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4.2. Second Order Characteristics." Closure Relation 

Strictly speaking Uns61d's approximation requires the closure relation to hold. By 
observing as to how far this fits LCAO-SCF orbitals one can judge the adequacy of 
a particular orbital set in second order. More specifically, we compare the sum 
over transition moments (STM) formula 

no,  c~,o (7a) 
W.5/, m- '~/ ' ,  m ' ,  

n~:O 

and the closure moment (CM) formula 

oo c~o0 c~oo (7b) (Q~,mQr,,,,) - ~ , ~ r , ~ ,  

for different l, m, 1', and m'. 

Fig. 1 exhibits for the three dipole operators the strong basis set dependence of 
the STM, whereas it can be seen that the CM, which is an upper bound of the 
STM for (I, m)=  (l', m'), is hardly influenced. The Z-operator is the most pro- 
nounced example of this behaviour with the ratio STM/CM varying from 0.25 to 
0.94. This rather dramatic effect, which is also demonstrated in Figs. 2 and 3 for 
the quadrupole and octupole operators, can be explained as follows. 

The CM contains only expectation values over the ground state, which is rather 
well described in all basis sets as we have already found in Sect. 4.1. For the 
calculation of the STM, on the contrary, the virtual orbitals are also required. 
Now, Figs. 1 to 3 show that the set of occupied and virtual molecular orbitals can 
only reach near completeness when polarization functions are included. Also, the 
values of  the exponents of the polarization functions are very important (compare 
basis sets C and D). 

The consequences of  this observation for the use of sum over states formulae are 
obvious. Although the ratio STM/CM in a finite basis set must not necessarily be 

a.u. 

Fig. 1. Completeness test of  basis sets 
A, B, C and D under the dipole 
operators. The shaded area denotes the 
value of the sum over transition mo- 
ments (formula (7a)), the open area of  
the closure moments  (formula (7b)) 
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Fig. 2. Completeness test for the quad- 
rupole operators. See also caption 
Fig. 1 
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Fig. 3. Completeness test for the octupole operators. See also caption Fig. 1 

equal to one for an opt imal  result, since one must  optimize numera tor  and de- 
nomina to r  in the sum over states formula  s imultaneously [18], one should aim at 
a value a lmost  equal to 1 for all different multipole operators .  So, we can be sure 
that basis set D is adequate  for  the calculation of  second order quantities, because 
the S T M / C M  ratio is close to 1 for those multipole operators  that  contr ibute 
significantly, and because the upper  bound  C M  is not  expected to be improved 
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much by enlarging the AO basis set still more. On the other hand, the other three 
basis sets (in particular A and B) will greatly underestimate the dispersion and the 
induction energy as well as the molecular polarizabilities, although the results for 
some components may be satisfactory. 

5. First Order Results and Discussion 

The first order electrostatic energy has been computed with the non-expanded 
interaction operator V AB using basis set A for the same two geometries as in Ref. 
[9] (Fig. 4). The first order exchange contribution can explicitly be obtained by 
subtracting the first order electrostatic energy from the total first order interaction 
energy tabulated in Ref. [9]. 3 Exchange and electrostatic energies are listed for 
both geometries in Table 3, which also contains the electrostatic energy computed 
in the two approximate models: the multipole expansion and the point charge 
(monopole) model. 

Y I Y 

Fig. 4. Geometries of the ethylene 
dimer considered in this work 

i 

1 
I 

Y 

o ."  " ' , ,  

I 

R ,.I I 
I 
I 

lI Y 

-" Z 

3 It must be noted that the first order energy of Ref. [93 is computed according to a definition which 
is slightly different from the one obtained from symmetry-adapted perturbation theory, applied, for 
instance, in Ref. [60] (formula (3)). 
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Table 3. First order interaction energy in l0 -s  a.u. Geometries given in Fig. 4 

F. Mulder et  al. 

Electrostatic a Electrostatic ~ 

R Point Multi- Multi- 
(Bohr) Exchange a, b Exact b charge b, d pole e pole e 

Geometry I 

4.0 28541.20 - 10436.61 1 1 1 0 . 8 2  4 4 3 3 2 . 2 8  43965.29 
5.0 5315.58 - 1069.77 509.46 2461.10 2553.94 
6.0 942.44 110.13 262.73 427.10 456.28 
7.0 148.56 136.99 146.08 168.25 178.31 
8.0 17.46 85.18 84.76 89.23 93.32 

10.0 0.07 32.60 32.58 32.86 33.79 
13.0 0.01 9.91 9.97 9.93 10.09 
16.0 0.00 3.74 3.76 3.75 3.79 

Geometry II 

6.0 6879.24 -2071.78 -94.57 124.94 138.02 
7.0 1122.76 -258.04 -70.88 -34.00 -25.52 
8.0 162.21 -57.50 -47.34 -35.20 -30.36 
9.0 18.57 -26.62 -31.00 -24.89 -21.98 

10.0 1.54 - 16.98 - 20.48 - 16.82 - 14.98 
11.0 0.09 -11.44 -13.76 -11.41 -10.21 
13.0 0.01 -5.54 -6.62 -5.54 -4.97 
16.0 0.00 -2 .15  -2.55 -2.15 -1.93 

a Basis set A used. b From Ref. [72]. ~ Basis set C used. 
a Charges from a fit to Q2,0:-0.3966 a.u. on C, +0.1983 on H. 
e Up to and including 2e-pole interactions: C]I3(6A, 6B). 

By v i r tue  o f  t he  D2h s y m m e t r y  o f  e t h y l e n e  o n l y  t e r m s  d e p e n d i n g  o n  an  o d d  p o w e r  o f  

R c o n t r i b u t e  in t he  m u l t i p o l e  e x p a n s i o n  to  t he  f i rs t  o r d e r  e l ec t ro s t a t i c  e n e r g y :  

(even) 
A~( t )  _ ~ el /RtA+ZB+ 1, 

" C ~ e l e c t r o s t a t i c  - -  C / A +  IB + 1 ( 8 )  
IA, IB = 2 

w h e r e  

C ~  C~ 2B) 5 - -  5 \  A~ 

c e l  r~eq9 4B)+C~I (4A,  2B ) 7 = ~ 7 \ ~ A  ~ 

c e l _ r ~ e l i a  4B)+C~I (2A,  6B)+C~I (6A,  2B ) 9 - -  ~ 9 \ ~ A ~  

c e l  __g~el  [ a  6 B ) + C ] 1 1 ( 6 A ,  4 B ) + C  el ( 9  el 1 1 - -  W l l k ~ A ,  I I \ ' A ,  8 B ) ~ - C l l ( 8 A ,  2 B ) ,  (8a) 

etc. ,  

w h e r e  e, C zA + lB + I(IA, lB) r e p r e s e n t s  t he  i n t e r a c t i o n  o f  a 2 la -po le  o n  m o l e c u l e  A w i t h  

a 2 ~ - p o l e  o n  B. 
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Having a program to compute molecular multipole moments up to and including 
the 26pole, we are able to employ the multipole expansion to a C]13 term; how- 
ever, the C~ 1 term is the last term in the expansion that is complete (e.g. in c]lt  the 
terms C]ll(2a, 8B) and C]ll(Sa, 2B) are missing). 

The molecular charge distribution needed for the point charge model calculations 
has been fixed by a fit to the Q2, 0 component of the quadrupole moment, which in 
geometry I contributes more than 99~ to the quadrupole-quadrupole interaction 
energy. The resulting point charge on carbon is - 0.3966 a.u., whereas the Mulliken 
gross atomic charges are -0.3734 and -0.2346 a.u. for basis sets A and C re- 
spectively. This difference for basis set A and C is an illustration of the fact that the 
Mulliken population analysis loses its Significance for extended basis sets. 
Furthermore, one can observe from Table 3 that this one-parameter (point charge) 
fit is of rather different quality for both geometries; improving the results for 
geometry II by assuming another point charge would cause a deterioration for 
geometry I. In addition to this problem Table 3 shows that the point charge 
(monopole) model is not an alternative to the multipole expansion as far as the 
convergence is concerned, at least in the case of the ethylene dimer: both start to 
diverge at approximately the same R. 

To get an insight in the convergence of the multipole series in first order one can 
consult Figs. 5 and 6, where ratios of the cumulative contributions of the successive 
multipole series terms and the total electrostatic energy without using the multi- 
pole expansion, are plotted. The large deviations from the unexpanded result which 
appear if one only takes into account quadrupole-quadrupole interactions are 
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substantially reduced by inclusion of higher order terms. For instance at a distance 
of 9 Bohr the multipole energy of geometry I rises from 49% to 98~/0 of the total 
electrostatic energy, taking into account terms up to and including C 11-contribu- 
tions. The same figures are for geometry II 69~0 and 98%, respectively. 

The question whether it is better to cut off the multipole expansion after the last 
term which is complete (C9R - 9 in this case) or after the highest term which can be 
computed with the multipole moments available (C13R-~ 3) cannot be answered 
unambiguously. For geometry I the latter procedure appears to be the better, 
whereas for geometry II the former leads to a better agreement, but actually a 
cut off after C~aR ~ 1 yields the best results in both cases. 

6. Second Order Results and Discussion 

6.1. Static Polarizabilities 

Because of the evident relationship between the polarizability and the dispersion 
energy, which for example is expressed in London's dispersion formula [10, 48] 
and formulae (5) and (6), we start by considering this second order molecular 
property. As a general definition for the static polarizabilities we have adopted in 
this paper the second order perturbation formula (compare (5)): 

c~(l, m;l', m')=2 ~ Qt~ ,o Q,,,m,/(En-Eo), (9) 
n:~O 

which differs from the one of Dalgarno [73] in that tesseral harmonics instead of 
spherical harmonics are used 4. In Table 4 the three dipole polarizability com- 
ponents are listed. Both orbital energy differences and state energy differences 
were used as denominators, the former systematically yielding smaller results by a 
factor lying between 0.69 and 0.74 for all basis sets and components. The latter 
values appear to approximate the experimental polarizabilities much better, in 
correspondence with the conclusions of Refs. [26] and [63]. 

It appears from the closure relation that the z-component of the polarizability 
depends most critically on the basis set; naturally, the best results are obtained 
with basis D. The bracketed values of Table 4 show that it is possible to annihilate 
the strong basis set influence to a large extent by applying the Uns61d approxima- 
tion as described in Sect. 3 (where the mean excitation energies A are defined by 
(5)). This is caused, on the one hand by the almost invariant closure moment, and 
also by the only moderate influence of the basis set on the mean excitation energies 
(Table 5). Table 6 exhibits the same feature for the higher order polarizabilities; 
furthermore, Table 6 gives an insight in the deviations from the closure relation 
for all multipole operators that enter the calculations. 

Another  definition employing Cartesian tensors and a varying factor instead of  a constant  factor 
of  2, which is equivalent to ours for the dipole polarizability only, is extensively established in Refs. 
[39], [40] and [74]. 
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Table 4. Static dipole polar izabi l i ty  c o m p o n e n t s  (in a.u.)  of  e thylene in different basis  sets" 

53 

c~ (1, 1; 1, 1)b C~ (1, _ 1 ;  1, _ l ) b  C~ (1, 0; 1, 0)b ~b 

A c 20.75 (26.91) 37.03 (41.30) 4.96 (19.76) 20.91 
B c 20.81 (28.12) 40.48 (45.06) 9.69 (23.05) 23.66 
C ~ 22.20 (25.34) 40.96 (42.34) 12.83 (17.79) 25.33 
D d 19.53 (20.33) 28.51 (29.32) 16.80 (17.94) 21.61 
D c 26.50 (27.59) 41.08 (42.25) 23.16 (24.72) 30.25 
D, ~c.e 5.21 22.20 11.96 - -  
Exper imenta l  f 26.1 36.4 22.9 28.5 
Calcula ted  g 24.5 32.8 19.4 25.6 

a Between brackets  the  values ob ta ined  with Uns61d ' s  approx ima t ion .  
b c~ (1, 1 ; 1, 1 ) = ~ ,  ~ (1, -- 1 ; 1, -- 1) = c % ,  c~ (1, 0; 1, 0) =c~,_, s imilar  to the definit ion of  Ref. [39] ; 

c State energy differences used. 
d Orbi tal  energy differences used.  
e ~-polarizabil i ty con t r ibu t ion ;  the con t r ibu t ion  of only ~ -~ n* to ayy is 99.6~o of  the total  ~-cont r ibu-  

t ion  to ~yy. 
f ~ is t aken  f rom Ref. [76] ; in Ref. [75] this ~ is used to de termine  the an iso t ropy  of ~. 
g Ref. [24] (calculated with bond  polarizabili t ies).  

Table 5. Calcula ted  m e a n  exci tat ion energies for the dipole and  quadrupo le  opera tors  (in a.u.) in 
different basis  sets" 

(1, m ;  1', m ' )  b A B C D 

(1, 0; 1, 0) 0.87 0.77 1.00 0.70 
(1, 1; 1, 1) 0.73 0.70 0.76 0.71 
(1, - 1 ;  1, - 1 )  0.56 0.51 0.53 0.53 
m e a n  value ~ 0.64 0.60 0.67 0.63 

(2, 0; 2, 0) 0.90 0.81 0.86 0.84 
(2, 0; 2, 2) 1.09 0.89 0.95 0.90 
(2, 1 ; 2, 1) 0.70 0.56 0.89 0.81 
(2, - 1 ; 2, - 1) 0.78 0.71 0.95 0.77 
(2, 2; 2, 2) 1.16 0.91 1.09 0.96 
(2, - 2 ;  2, - 2 )  0.75 0.70 0.73 0.73 
m e a n  value  c 0.83 0.75 0.86 0.80 

" Based on state energy differences;  com pa re :  
first ionizat ion energy (exper imental) :  0.39 a.u. [77]. 
first exci tat ion energy,  singlet ~z ~ ~* (calculated):  
0.28 a.u. [78]. 

b Accord ing  to defini t ion (5) for All',',. ' ' .  
c Obta ined  f rom the m e a n  polarizabil i ty and  the m e a n  

expecta t ion value of the opera tors  concerned.  
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Table 6. Higher order polarizability components in (a.u.) of ethylene in two basis sets" 

(l, m; l', m') b A D A(UnsOld) ~ D(Uns61d) c 

(2, 0; 2, 0) 86.43 155.78 151.72 172.23 
(2, 0; 2, 2) 30.68 53.04 46.09 56.87 
(2, 1;2,  1) 29.45 116.96 152.00 143.01 
(2, - 1 ; 2, - 1) 69.29 234.85 253.48 293.76 
(2, 2; 2, 2) 79.51 215.19 188.37 238.30 
(2, - 2 ;  2, - 2 )  320.80 404.03 389.14 415.08 
mean value 117.10 225.36 226.94 252.48 

(1, 0; 3, 0) -24 .44  -80 .67  -92 .44  -86 .27  
(1, 0; 3, 2) -22.79 -75.05 -69.26 -77 .72  
(1, 1; 3, 1) -121.21 -108.76 -101.94 -104.11 
(1, 1; 3, 3) -183.86 -186.72 -166.19 -180.94 
(1, - 1 ; 3, - 1) -59.13 -76.23 -78 .87  -80.53 
(1, - 1 ;  3, - 3 )  -12 .60  -53 .37  -39.51 -59.18 
mean value 0 0 0 0 

(3, 0; 3, 0) 206.25 1690.22 1938.19 2285.71 
(3, 0; 3, 2) 204.66 565.22 800.98 796.68 
(3, 1 ; 3, 1) 855.76 1412.25 1821.64 2094.41 
(3, 1 ; 3, 3) 1398.44 1696.99 1519.50 1692.89 
(3, - 1 ; 3, - 1) 1505.63 2893.51 3256.36 3509.21 
(3, - 1 ;  3, - 3 )  -724.45 -572.50 31.54 -55 .37  
(3, 2; 3, 2) 304.79 1079.07 1897.94 2311.13 
(3, - 2 ;  3, - 2 )  340.60 2478.90 2553.73 3050.76 
(3, 3; 3, 3) 2652.90 4791.96 5171.66 5403.58 
(3, - 3 ;  3, - 3 )  1834.50 3768.29 4079.22 4460.68 
mean value 1100.06 2587.74 2959.82 3302.21 

a State energy differences used. 
b According to definition (9). 
c Uns61d's approximation is applied as described in Sect. 3. 

Finally, it can be observed from Table 4 that the o- and rc contributions to the 
dipole polarizability are of  the same order of  magnitude in the y- and the z- 
direction; in the x-direction the re-system does not contribute more than about  20~.  

6.2. Dispersion and Induction Energy 

We can write the following multipole expression for the dispersion energy 

A ~t;,(2) _ ~ / ~ d i s p  /RIA+I'A+IB+Ij~+2 
~dispersion - -  "~ IA -b l~  + IB + I~3 -k 2 / " 

lA, lX, IB, lib = 1 

(1o) 

In the case that both monomers  are of  D2h-symmetry, only even powers of  1/R 
appear  in the expression: 
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c ' p(bj 1.1.) 

Cai~p_Cdi~wt 1 2B2B)+C~i"P(2A2A. IB1B)+C~i~p(IAIA. l~3B) 8 - -  8 \~AIA ' 

disp 
+ C 8 ( IA3A,  1BI~) 

c d i s P _ _ c d l s p (  l 1 3~3~)j_c, disp~ ~ 1B1B )+  disv 
10 - -  10 I AI tA ,  - - ' ~ ' 1 0  ~-JA~A'  C10 (]A3A, 3B1B) 

+C{~,(2A2A. 2B2B)+ di.p disp C lo (la3a,  2B2~) + C10 (2a2A, 1B3B) 

disp +C~o (1A3A, 1B3B)+other cross terms, 

etc., (10a) 

where C ~"+P ix + ~ + t~ + 2 (IAI'A, 1BI~) represents the interaction of the simultaneously 
induced 2a~ and 2 zx poles on molecule A with the simultaneously induced 2 *" and 
2 v~ poles on molecule B. Employing an interaction operator containing all dipole, 
quadrupole and octupole interactions, one obtains multipole terms with maximum 
R - t 4  dependence. However, only the r~d~sP and g'~disp ~6 ~s  terms are complete for 
example, missing non-zero cross terms in ~disp "~0 are arising from (11, 24) and 
(11, 15) interactions. Moreover, to be consistent, one should include also higher 
order perturbation effects, because these give rise to non-vanishing terms which 
start off with an R - ~ ~ dependence (a third order contribution). 
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As in first order, the convergence behaviour has been investigated and compared 
with unexpanded results for basis set A (Figs. 7 and 8). The expanded as well as the 
unexpanded results are obtained with state energy differences, since f rom the 
experience of  the polarizability calculations these are expected to yield better 
values than orbital energy differences. Use of the latter would reduce the results 
systematically, as in the case of  the polarizabilities, with an almost constant factor 
of  0.70-0.75. No  very general conclusions can be drawn fi'om Figs. 7 and 8: 
C6 R - 6  by itself gives deviations of  not more than 13~ down to a distance of  
6 Bohr for geometry I, but it deviates to a max imum of 54~ for geometry II, con- 
sidered over the same range. On the other hand, C6R- 6 q_ C8 R -  8 differs by 42~  
and 1@o from the unexpanded result for geometries I and I I  respectively, at a 
distance of  6 Bohr again. Nevertheless it seems to be evident that it is not very 
worthwhile to go up to such high order terms as given in Figs. 7 and 8, certainly 
not when these terms are incomplete. One must be cautious, though, in drawing 
general conclusions about  the convergence in second order merely on the basis of  
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c~isp(l l  ; l l )=C~isP(1AIA,  1B1B); 
caisp(11 ; 22)=c~isp(lalA, 2B2B)+c~isP(2a2A, 1B1B) 
C~P(ll;a3)=C~i~,(lalA, 1B3,)+ C~i~P(la3A, 1,1,). 

For each basis set three bars are plotted, representing computations with the sum over states formula 
(3), the mean energy formula (4), and the Uns61d formula (6) respectivelv 
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computations with basis set A. This can be deduced from Fig. 9 which shows the 
strong basis set dependence of the C~ isp and C di~p constants for geometry I, and 
also the basis set influence on the C disp cross and quadratic terms separately: for 
basis set D both terms almost cancel each other, whereas for basis set A the 
repulsive cross term exceeds the attractive quadratic term. 

The divergence of  the multipole expansion at short distances, as well as the fact 
that exchange contributions are not considered, makes the present treatment only 
useful at intermediate and long range. At very long range there is a limitation 
because of relativistic/retardation effects. For  instance the R - 6  dependent dis- 
persion term should be multiplied with a retardation factor, which continuously 
modifies this term into an R -~ term at very long distances [80, 81]. Using our 
calculated mean dipole excitation energy (0.63 a.u.) one can estimate ~, the reduced 
wavelength of  a characteristic allowed transition in the interacting molecules, at 
about 215 Bohr (~ = (~A)-1, where c~ is the fine structure constant). This yields a 
retardation factor of 0.9 at a distance of 30 Bohr and 0.5 at 125 Bohr [81] ; how- 
ever, in practical calculations, for example on crystals, this is of little importance, 
because the absolute values of the interactions are already very small at those 
distances. 

From Fig. 9 one can also observe that the mean energy approximation (formula 
(4)) leads to rather small deviations from the sum over states formula (3) (not more 
than 7~o); and that, quite similarly to the polarizability calculations, the Uns61d 
approximation (formula (6)) yields results much more stable under basis set 
modifications: in the Uns61d approximation the values of C 6 and Cs computed 
with basis sets A, B and C differ from those obtained with basis set D by not more 
than 20%, whereas for the sum over states formula this difference can amount to a 
factor of 5. 

Table 7 shows all the Cd~Spvalues computed with our best basis set D, using the state 
energy denominators for both geometries I and II. Some induction energy 
coefficients (C jnd) are also included to demonstrate the unimportance of the 
induction energy in comparison with the dispersion energy. From Table 7 one can 
get an impression of the anisotropy of the dispersion energy: the quadratic terms 
show some anisotropy, the cross terms however behave much more anisotropically, 
just as the first order electrostatic energy. The quadratic terms are always attractive, 
while the cross terms can be either attractive or repulsive and vanish when averaged 
over the orientations of molecule A for a fixed orientation of molecule B in the case 
of l A v a l~ (and the reverse for l B r l~); theoretically this has been proven in Refs. [42] 
and [137. Still, the cross terms cannot be neglected because they are of the same 
order as the quadratic terms; for the two geometries considered they improve 
greatly the convergence of the multipole series, in particular for geometry I, where  
quadratic and cross terms in C~ i~p and ~10t'~disp almost cancel each other [82]. 

A comparison of  the results with those obtained by Haugh and Hirschfelder [8] 
many years ago, shows that the latter are only smaller by a factor of 2/3, at a 
distance of 10 A. The orientational dependence of the dispersion energy reported 
by these authors exhibits trends also obtained by us in some preliminary calcula- 
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Table 7. Second order energy coefficients for basis set D, using state energy differences" 

Geometry I Geometry II 

c~isP(1A1A, IB1B) (a.u.) b --340.83 --394.61 

C di~p (1A1A, 2B2B) ) -- 58.951 -- 97.932 
C ~i~P(2A2A, 1BI , ) |  --58.951 --66.328 
cdisP(1A1A, 1B3~)|~. 54.640 -72.504 
c~i~P(1A3A ' 1B1B)[(a.u. X 10 -2 )  54.640 63.720 
C~"d(1A1A, 2n) | --6.757 --2.015 
c~nd(2A, 1BI~) J --6.757 --11.984 

C ~P(2A2A, 2B2B)" 
C~o~P(I A1A, 3B3n) 
c~io~'(3A3A, I~IB) 
C ~)~P(3A 1A, 1.3B) 
C~io~P(I A3A, ln3~) 
C~O~P(2A2A, lS3,) 
C~io~(1A3~, 2B2,) 
C ~0a(2A2A, 2B) 
C ~0d(2A, 2~2B) 

~ (a.u. x 10 -4 )  

-21.1034 -30.1105 
- 13.0542 -21.3878 
- 13.0542 - 14.1406 
-4 .5828 6.1638 

- 13.2519 16.3131 
16.3938 -20.7730 
16.3938 27.5163 

- 1.8291 -0.6858 
- 1.8291 -2.6947 

disp 3B3~)q C12 (2A2A, --7.3162 --10.5476 
disp 2B2B)~ --7.3162 C~2 (3A3A, -- 10.3801 
d i sp  3 ,3B)[  (a.u. x 10- 6) C12 (1A3A, 5.6068 9.0564 
dJ~p l~3~)J  5.6068 C12 (3A3A, --7.0157 

disp C14 (3A3A, 3~3B) (a.u. x 10 - s )  --3.8307 --5.1929 

The dispersion coefficients are denoted according to (10a); in the 
induction coefficients the permanent moments are represented by 
one instead of  two numbers. 

b For comparison: a recently calculated mean value: - 321.0 a.u. [79]. 

Table 8. n - ,  n* contribution to C~iSp(11 ; 11) and cdisP(11 ; 13), in a.u., for geometry I in two basis 
sets, using state energy differences. 

A D 

f z~-+ 7z* - 19.75 -21 .26  
Cd61~P(ll; 11)=C~Sp(1A1A, IBIs ) y_ya --87.80 --102.07 

L total -- 135.65 --340.83 

f Tr~ ~* --606.60 --792.32 
c~isp(ll; 13)=c~isP(1A1A, 1B3B ) y_ya 2062.46 2851.93 

+c~isP(1A3A, I~IB) ( . to ta l  4585.45 10928.07 

a The ~ ~ ~* contribution is part of the y-y  component, arising in C 6 from 
Q1, - 1 on both molecules, in C 8 from Q1, - 1 on the one, and Q3, - 1 and Qa, 3 
on the other molecule. 
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tions on other geometries. The relative n - n  contribution to the dispersion energy 
for geometry I, which was found to be about 15% in Ref. [8] and somewhat larger 
in Ref. [9], appears to be rather dependent on the AO basis set (Table 8). Our best 
calculations yield a value of not more than 7~  o. From Table 8 it also appears that 
the assumption of Ref. [9] that the ratios of the different contributions are of  
correct magnitude, even if the total second order energy may be underestimated, 
is not confirmed; the contribution of the y - y  component to C disp is 65% for basis 
set A, but only 30% for basis set D. 

Finally, we have tried to compose a total interaction energy curve from the total 
first order VB energy (electrostatic + exchange) of Ref. [9] and the second order 
energy computed in the multipole expansion, as we found this to be a rather 
successful procedure in our He-He  calculations [18], even down to the minimum. 
However, choosing the multipole expansion results of basis set D, being the best 
available for the second order energy, we obtain an interaction curve for geometry I 
which we think not to be correct: it starts being repulsive at short range, goes 
through an attractive minimum and a repulsive maximum to stay repulsive at long 
range. This artifact could be caused by the exchange energy being underestimated 
in basis set A, or by the use of the multipole expansion. If we, for instance, suppose 
the lacking cross terms in g-~disp �9 ~ 10 to be repulsive and of the same magnitude as the 
cross terms which are taken into account in this term, the minimum in the inter- 
action curve disappears. We also tried to remove the artifact by cutting off the 
multipole expansion in different ways, but none of these was successful. And 
indeed, it may be impossible to obtain a reasonable interaction energy in the region 
of the Van der Waals minimum, using the multipole expansion, because of 
penetration effects [-60]. 

7. Conclusions 

1) The first order criterion (values of the permanent multipole moments) shows 
that the smallest basis set used, the split-valence (s, p)-basis set A from Ref. [9], is 
sufficiently good to compute the first order electrostatic energy. 

2) From the second order criterion (deviations from the closure relation), we know 
that inclusion of  polarization functions is absolutely necessary for calculation of  
molecular polarizabilities and dispersion and induction energy. Choosing the 
value of  the exponent of an atomic polarization function slightly smaller than the 
exponent of the valence atomic orbital, thus employing polarization functions 
which are more diffuse than for optimal SCF computations, seems to be a suitable 
recipe. 

3) In so far as experimental values are available, they compare very well with our 
best calculated properties (Tables 2 and 4). From the experimental dipole polariz- 
ability values we may conclude that the use of state energy differences instead of 
orbital energy differences in the second order perturbation expression is to be 
preferred. 
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4) Figs. 5 to 8 show that, taking into account only the first term of the multipole 
series, the quadrupole-quadrupole and the induced dipole-induced dipole inter- 
actions respectively, is insufficient, even at rather large R. No unique prescription 
for cutting off the multipole series could be deduced from Figs. 5 to 8 because of  
the apparent geometry dependence. Our calculations do not provide numerical 
evidence for the asymptotically divergent (semiconvergent) character of  the 
multipole expansion which has been proven theoretically [14, 83-85]. 

5) The point charge (monopole) model has the same limitations as the multipole 
expansion: it breaks down for small intermolecular separations (Table 3). Mulliken 
gross atomic charges from extended basis sets cannot be trusted to be used in point 
charge calculations. 

6) From Table 7 one can observe that the so-called cross terms in the second order 
interaction energy, which are averaged out in the gas phase, are certainly not 
negligible in a fixed geometry. Because of their large anisotropy shown in Table 7 
they could play an important  role in rotational phase transitions in crystals. 

7) The Uns61d approximation as introduced in this paper and in Ref. [-17] appears 
to be very satisfactory for second order computations, as can be observed from 
Tables 4, 6 and Fig. 9. Its principal advantage for practical computations is the 
insensitivity to the basis set, so that one can use a small basis. The resulting 
London-like formula contains anisotropic mean energies unlike most applications 
of Uns61d's approximation. Note from Table 5 that the mean energies, which are 
calculated from the theoretical polarizabilities in this work, differ by a factor of 
1.3-2.6 from the ionization energy, which is often substituted as the one isotropic 
mean energy. 

8) From our polarizability calculations (Table 4) as well as from our dispersion 
energy calculations (Table 8) we should conclude that the ~-system of ethylene does 
not play the dominant role over the a-system that has been assumed sometimes in 
the past. 

9) From Tables 3 and 7 it follows that both first order electrostatic and second 
order dispersion energy contribute substantially to the total energy, whereas the 
induction energy is much less important. The exchange energy from Table 3 
shows an almost exponential distance dependence, which may be a basis for 
further simplification of the intermolecular potential applied in lattice dynamics 
calculations for example. The result we obtained for the total energy by adding the 
long rang~ second order interaction energy in the multipole expansion to the 
"exact" first order energy is disappointing, particularly in the region of  the Van der 
Waals minimum, and does not support the use of the multipole expansion for this 
purpose. This applies to computed as well as empirical estimates of  C 6 and C s and 
is a stimulus to restart our multistructure VB calculations. The basis set can then 
be chosen on the basis of the information obtained from this paper. 
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